
AUTOMATED SYNTAX TESTING USING JSYNTESTTM

Syntax testing, also called grammar-based testing, is a powerful black box, data-driven testing 

technique for testing applications where the input data can be described formally. Originally devel-

oped to help test compilers and language processors, syntax testing can also be used in applications 

that are more mundane.

Here are some possible domains:

1. GUI applications. GUI applications typically involve user interaction via dialog boxes. These 

dialogs often have data fields (e.g. date, phone number, social security number) that have a pre-

cise syntax.

2. XML/HTML files. All XML/HTML files have a precise structure with well-defined tags. Such a 

structure is amenable to formal specification.

3. Command-driven software. These are among the common applications that benefit from syn-

tax testing. Shell scripts and non-GUI applications that take command line arguments are exam-

ples.

4. Scripting languages. Some commercial applications are bundled with support for a scripting 

language such as Perl, Python, VBScriptTM, and so on. For example, our tools JStyleTM and 

JEvolveTM support scripting in VBScriptTM and JMScriptTM. Script support enables users of 

the application to extend its functionality in arbitrary ways. These scripting languages have a 

precise, formally expressible syntax.

5. Database query languages. Database query languages such as SQL can be described by a for-

mal grammar.

6. Compilers. Testing compilers is a formidable task due to the size of the input space. Since the 

compiled language has a precise grammar, it should be feasible to use the syntax specification to 

generate test cases, just as it is used for syntax validation.

THE APPROACH

When we follow syntax testing to generate test cases for a problem, we typically represent the input 

space using a formal syntax, similar to BNF. In cases where the target language is implicit, addi-

tional effort is required to mine the language before coming up with a grammar. Defining the gram-

mar satisfactorily might require a couple of iterations. Since data generation is driven by the 

grammar, we should strive for completeness and consistency. From the grammar, we systematically 

generate test data. In many cases, we will have to generate “dirty data”, data that does not satisfy 

the grammar. This is required if we need to assure that the component under test handles invalid 

data correctly.

The approach to data generation using syntax testing is the reverse of what a language parser does 

with the grammar. Take the case of Yacc. Yacc allows us to express the grammar of a language in a 
1



Automated Syntax Testing Using JSynTestTM
specific syntax and generates a parser for that language. The generated parser is typically a C pro-

gram (other language versions might be available) that when compiled and run, is capable of recog-

nizing any string that conforms to the specified grammar. To handle context-sensitive situations, 

Yacc allows us annotate the grammar with action code, which get appropriately embedded in the 

generated code. In syntax testing, however, an automated tool such as JSynTest generates a syn-

thesizer, instead of a recognizer, from the grammar.

AUTOMATED TOOLS

Although syntax testing can be performed manually, it is impractical when attempted on problems 

with a large input space characterized by complex relationships. In such cases, the availability of a 

tool that can automatically generate the test data from a formal specification will be a major advan-

tage. Of course, the hard task of defining the grammar has to be performed manually, but the tool 

can help by supporting at least minimal debugging.

JSYNTEST

At Man Machine Systems, we have built a Java-based syntax-testing environment. The following 

were our design goals:

The representation formalism must be sufficiently rich to capture a wide range of input data.

To facilitate ease of use, the tool should sport a GUI.

To assist testers in defining the input space as accurately as possible, at least  minimal support 

for debugging the grammar must be available.

It should be possible to build grammars incrementally.

The environment must encourage and support reuse of grammars.

It should be possible to embed the data generation logic within an application.

Since we were keen on building a framework that was also portable, Java appeared to be a natural 

choice.

THE JSYNTEST APPROACH

Using JSynTest is a three-step process:

Step 1. Describe the input data space.

Step 2. Generate a Java program from the input description.

Step 3. Compile and run the generated Java program.

Synthesizing a Java program from the input specification, as opposed to directly emitting the data 

set, was a conscious decision so as to support embedding the data generation logic in an applica-

tion. There is a runtime library to support the logic contained in the generated code. As in any pro-
2



Automated Syntax Testing Using JSynTestTM
gram development effort, the above steps are repeated until the generated data set meets our 

expectation.

DESCRIBING THE DATA SPACE

Since the ability to specify the data space accurately is crucial to automated generation, we spent 

substantial effort to arrive at an acceptable formalism. Our formalism is similar to BNF, with 

enhancement to support user-defined actions. 

In JSynTest, the data space is described in one or more grammar files. Here are the salient fea-

tures of our formalism:

Grammar can be composed from other grammars.

Grammar can be inherited for reuse.

A grammar can optionally be qualified as abstract or final.

Non-terminal (NT) nodes can be overridden in a derived grammar.

NT nodes can be qualified as final to prevent overriding.

Actions can be associated with each NT node if needed.

Grammar object can be reflected upon.

User-defined actions will be preserved across code regeneration.

GRAMMAR FILE

A target language is described in one or more grammar files. A grammar file is a text file written to 

conform to a special syntax understood by JSynTest. The following are the top-level constituents of 

a grammar file: 

A qualified grammar name,

structure section,

actions section (optional) and

bindings section (optional).

Every grammar is named. In addition to serving as an aid in denoting the target language it 

describes, it can be used for building other grammars. It should be in a file that has the same root 

name as the grammar name itself.

The structure section defines the structural relationship between various non-terminals and termi-

nals of the target language. The derivation rules are enclosed within a pair of braces after the struc-

ture keyword.

A rule consists of a left-hand side (LHS) and a right-hand side (RHS). The symbol on the LHS is 

referred to as the non-terminal symbol (NT). A terminal symbol is one that does not have an associ-
3



Automated Syntax Testing Using JSynTestTM
ated RHS, and is considered a leaf node. The RHS can be made up of non-terminals and terminals 

combined using “&” (“and”) and “|” (“or”) logical operators, qualified by repetition markers. The fol-

lowing are some rules:

A: B;

B: C & "D" & C | E;

C: "p" | "q";

E: "st";

In this set of rules, A, B, C, and E are non-terminal symbols since they have associated RHS. “D”, 

“p”, “q”, and “st” are terminal symbols since they do not appear on the LHS of any rule.

When the RHS of a rule comprises both “&” and “|” operators, by default, they are treated left-asso-

ciatively. In other words, the elements are grouped from left to right. The precedence of these two 

operators is the same. The associativity may be overridden by enclosing within parentheses as 

needed.

For example, the rule

A: (B | C) & (D & E);

without the explicit parentheses will be treated as

A: (((B | C) & D) & E);

The RHS may optionally be annotated with repetition markers. A repetition marker indicates how 

many times the particular element needs to be repeated during the generation process. The follow-

ing marker formats are supported:

number => indicates that the element is to be repeated number times.

number* => indicates that the element is to be repeated 0 to number times.

number+ => indicates that the element is to be repeated 1 to number times.

* => indicates that the element is to be repeated 0 to infinity times.

+ => indicates that the element is to be repeated 1 to infinity times.

Examples:

P : Q & R | T;

Q : (“r” | “s”)3+; // The RHS of Q will be repeated 1, 2, 3 times

R: (“abc”) 2* & S; // The string “abc” will be repeated 0, 1, 2 times

S: (“lkj” & “opu”)23; // RHS to be repeated 23 times

T : “zxcvb| +; // Repeat 1... times

Note

When “*” or “+” is used, the generation process will not terminate on its own. The only way to 

terminate is to attach some pre/post action code to the node and handle termination within the 

action code.
4



Automated Syntax Testing Using JSynTestTM
The marker “1*” is equivalent to enclosing the RHS element within “[ ]”. That is,

A: (B)1*; // Do B zero or once

and

A: [B]; // Do B zero or once

are equivalent.

The following is a complete (although trivial) input specification:

// Sample grammar

// File: sample.grm

grammar sample;

structure {

       start: A & B | C;

       A: "AA";

       B: "BB";

       C: "CC";

}

Every grammar must have a special non-terminal symbol called start. This is the starting point for 

generation.

ACTIONS

JSynTest reads the language definition file and internally represents the information as an AND-OR 

graph made up of terminal and non-terminal nodes. It then emits a Java program that implements 

the graph and which when executed, traverses the graph by visiting the constituent nodes and 

appending the generated sub strings to an output buffer. To support context-sensitive processing of 

the nodes, certain actions can be carried out as part of visiting a node. These actions are user-

defined Java code fragments and are defined in the actions section of the grammar file. In order to 

facilitate reusing action code at multiple nodes, each action can be given a name, and bound to non-

terminal nodes in the bindings section. 

Both the actions and bindings sections are optional. When only the structure is defined, the default 

behavior is to send the strings generated to standard output.

For anything other than trivial string generation, actions will have to be attached to one or more 

non-terminal nodes in the graph. Associating an action code with a node is done in two steps. First 

the action code is named and secondly, it is bound to a node in the bindings section. This two-step 

process facilitates reuse of an action code at multiple nodes.

In the AND-OR graph, a node may be traversed many times depending on the structure of the 

graph. For example, if a node is an OR node, it may have many choice points and hence might be 

visited at least as many times. An action code can be bound to a node, to be called by the graph tra-

versal algorithm at one of six points during the traversal. These are:
5



Automated Syntax Testing Using JSynTestTM
init: The action code is executed only once just before traversal starts.

start: The code is executed once at the beginning of each traversal of the graph.

pre: The code is executed just before visiting the node.

post: The code is executed just after visiting the node.

stop: The code is executed at the end of each traversal of the graph.

destroy: The code is executed just once when the graph traversal is complete.

The following example illustrates the various action code entry points.

grammar allactions;

structure {

      start: A & "is the result\n";

      A: B | C;

      B: "this-b ";

      C: "this-c ";

}

actions {

      Token.pre: %{

            System.out.println("About to enter Node");

            return LG_CONTINUE_NORMAL;

      %}

      // This will be called just once, at the very beginning.

      Token.init: %{

            System.out.println("Node object initialized");

      %}

      // This will be called just once, at the very end.

      Token.destroy: %{

            System.out.println("Node object destroyed");

      %}

      // This will be called once at the beginning of every traversal.

      Token.start: %{

            System.out.println("Traversal starts");

      %}

      // This will be called once at the end of every traversal.

      Token.stop: %{

            System.out.println("Traversal ends");

      %}
6



Automated Syntax Testing Using JSynTestTM
      // This will be called just after the node is visited.

            Token.post: %{

            System.out.println("Node has been visited");

            return LG_CONTINUE_NORMAL;

      %}

}

bindings {

      B: Token;

}

AND-OR GRAPH

As outlined earlier, at the heart of syntax testing is the construction and traversal of an AND-OR 

graph. The grammar that captures the input domain is internally represented as an AND-OR graph. 

At runtime, this graph is traversed appropriate number of times to synthesize all possible strings 

derivable from the grammar.

grammar simple;

structure {

start: A & B & "\n";

A: "a1" | "a2";

B: "b1" | "b2";

}

We can represent this grammar as the following AND-OR graph (in this case, an AND-OR tree):
7



Automated Syntax Testing Using JSynTestTM
The start node has an arc to suggest that it is an AND node. “A” and “B” are OR nodes. The other 

nodes are leaf nodes. An AND node is considered traversed only when all its children are traversed, 

whereas an OR node is considered traversed when any one of its children is traversed.

To traverse start, we need to traverse “A” and “B” and “\n”. Since “A” and “B” are OR nodes, taking 

any one of their children is sufficient for a traversal. This results in 2 * 2 * 1 combinations, or 4 com-

binations in all. Thus, the outputs emitted during the graph traversal are

      a1      b1      \n

      a1      b2      \n

      a2      b1      \n

      a2      b2      \n

To better understand JSynTest and its formalism, let us consider the following problem.

A COMPLETE EXAMPLE

Let us say we are interested in generating all valid dates in the range 1/1/2000 to 31/12/2001 (dd/

mm/yyyy), both dates inclusive. This data set might be required as an input to an application that 

uses date fields, but we will ignore the modalities of how the data generated by the tool will be fed 

to the application.

Here is our first attempt at defining a grammar for valid dates.

grammar Date;

structure{

      start : month & "/" & day & "/" & year & "\n"; 

      day : "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" | "10" |

      "11" | "12" | "13" | "14" | "15" | "16" | "17" | "18" | "19" | "20" |

      "21" | "22" | "23" | "24" | "25" | "26" | "27" | "28" | "29" | "30" |

      "31";

      month : "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" | "10" |  "11" | "12";

      year : "2000" | "2001";

}

This grammar is self explanatory. After JSynTest parses the grammar, it will synthesize a Java pro-

gram that builds an AND-OR graph corresponding to the grammar and traverses the graph as many 

times as needed to generate all possible combinations of output. We can easily see that the total 

number of combinations in this case will be 31 * 12 * 2. 

It is worth remembering that the same output data can be generated by different grammars. The 

following grammar, for instance, generates the same set of strings as the grammar above.

grammar Date2;

structure {

AND-OR Graph Representation
8



Automated Syntax Testing Using JSynTestTM
      start : month & "/" & day & "/" & year & "\n"; 

      digit: "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";  

      digit2: "0" | digit;

      month: digit | "10" |  "11" | "12"; 

      day: digit | ("1" & digit2) | ("2" & digit2) | "30" | "31";

      year : "2000" | "2001";

}

A compact grammar that generates exactly the required data, without generating all possibilities 

and then eliminating some, is preferable to a grammar that generates superfluous data and subse-

quently filters them. Just as in programming and other development efforts, it takes patience and 

experimentation before we arrive at a good grammar.

One problem with the above grammars is that they also emit invalid dates, such as 31/2/2000, 31/

4/2001, and so on. In some cases, of course, we would have to generate invalid dates, but let us 

ignore that requirement for now. To eliminate invalid data, we have to associate action code with 

some of the nodes. Here is the modified grammar:

grammar Date;

structure{

      start : month & "/" & day & "/" & year& "\n"; 

      day : "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" | "10" |

      "11" | "12" | "13" | "14" | "15" | "16" | "17" | "18" | "19" | "20" |

      "21" | "22" | "23" | "24" | "25" | "26" | "27" | "28" | "29" | "30" | "31";

      month : "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" | "10" | "11" | "12";

      year : "2000" | "2001";

}

actions {

      actYear.def: %{

      //month with 30 days

      String[] monWith30Days = {"4", "6", "9", "11"};

      //checks if month has 30 days

      boolean is30DayMonth(String mon){

            for(int i=0; i<monWith30Days.length; i++)

            if(monWith30Days[i].equals(mon))

            return true;

            return false;

      }

      //checks for leap year
9



Automated Syntax Testing Using JSynTestTM
            boolean isLeapYear(String yr) {

                  boolean leap;

                  int y = Integer.parseInt(yr);

                  if(y%100 ==0){

                        if(y%400 == 0) leap = true;

                        else leap = false;

                  }

            else {

                  if(y%4 == 0 ) leap = true;

                  else leap = false;

            }

                  return leap;

            }

      %}

      actYear.post: %{

            String dyStr = out.getStringAt(2);

            String mon = out.getStringAt(0);

            String yr = out.getGeneratedString(node);

            int dy = Integer.parseInt(dyStr);

            if(mon.equals("2")){

                  if(isLeapYear(yr)){

                        if(dy > 29)

                        return LG_MOVE_NEXT; 

                        //skip nodes that have values greater than 29

                  }

                  else {

                        if(dy > 28)

                        return LG_MOVE_NEXT;

                        //skip nodes that have values greater than 28

                  }

            }

            else if(is30DayMonth(mon)){

                  if(dy > 30)

                  return LG_MOVE_NEXT; //skip nodes that have values greater than 30

                  }

            return LG_CONTINUE_NORMAL;

      %}
10



Automated Syntax Testing Using JSynTestTM
}

bindings {

      year: actYear;

}

In the above grammar, we have associated an action named actYear with a node named year. As 

mentioned earlier, the section actYear.def defines fields and methods that will be emitted as part of 

the Java class. The section actYear.post defines a Java method that is invoked every time after the 

year node is visited. Inside the post method, the variable out refers to the output buffer that accu-

mulates the strings emitted till the end of each traversal. By default, the buffer contents are written 

to the standard output stream at the end of each traversal and the buffer is cleared.

REUSE OF GRAMMARS

As we started to design our grammatical formalism, it became apparent that grammars were poten-

tially reusable entities. Taking inspiration from object orientation, we decided to support composition 

and derivation among grammars. This means we could develop grammars incrementally, building 

upon other grammars. As an example, if we are building a specification for a language such as Java, 

we could define a grammar for expressions, use that to build a grammar for statements, from there 

to methods, to classes, and so on. This is a compositional approach. Similarly, we could define base 

grammars common to a family of languages, and then specialize these to apply to specific lan-

guages. 

The date example discussed above involves three fields - day, month and year. We can think of two 

other examples that involve three fields: telephone number and social security number. Is there a 

way to capture the commonalities (and differences) between these three examples? 

First, we define an abstract grammar that defines the top-level structure of these data:

abstract grammar ThreeFieldGrammar;

structure {

      start: field1 & separator & field2 & separator & field3 & "\n";

      separator: "-";

      abstract field1;

      abstract field2;

      abstract field3;

}

An abstract grammar captures an incomplete specification. A non-terminal node must be declared 

abstract if it does not have a corresponding RHS. A grammar that has at least one abstract node 

must be declared abstract. A derived grammar typically provides the definition (that is, RHS) for the 

abstract node. In case the derived grammar does not provide the definition  for any inherited 

abstract node, then the grammar must be declared abstract. An abstract grammar that defines one 
11



Automated Syntax Testing Using JSynTestTM
or more abstract nodes is a template grammar that defines the overall structure of the target lan-

guage, where the specifics are supplied by a derived grammar. 

In the above example, the non-terminals “field1”, “field2” and “field3” are left undefined. We then 

define a date grammar that describes what “day”, “month” and “year” are without actually specify-

ing how they should be combined. For simplicity, we will use a modified form of the first version of 

the date grammar discussed earlier (without actions).

abstract grammar Date;

structure{

      day : "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" | "10" |

      "11" | "12" | "13" | "14" | "15" | "16" | "17" | "18" | "19" | "20" |

      "21" | "22" | "23" | "24" | "25" | "26" | "27" | "28" | "29" | "30" |

      "31";

      month : "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" | "10" |  "11" | "12";

      year : "2000" | "2001";

}

We could similarly define grammars for telephone number and social security number, each of which 

describes three fields without suggesting how they are combined.

Given these, the following grammar specifies a concrete three-field date:

grammar  DDMMYYGrammar extends ThreeFieldGrammar;

structure {

      field1: Date.day; // composition

      field2: Date.month; // composition

      field3: Date.year; // composition

}

Notice how we derive from ThreeFieldGrammar and compose from Date. If we want to generate dates 

in MM/DD/YYYY format, the following grammar does the job:

grammar  MMDDYYGrammar extends ThreeFieldGrammar;

structure {

      field1: Date.month;

      field2: Date.day;

      field3: Date.year;

}

A similar strategy is applicable to telephone number and social security. For example,

grammar TelephoneGrammar extends ThreeFieldGrammar;

structure {

      field1: TelephoneNumber.areacode;
12



Automated Syntax Testing Using JSynTestTM
      field2: TelphoneNumber.number1;

      field3: TelephoneNumber.number2;

}

As in the case of object orientation, derivation and composition of grammars prove useful ideas in 

syntax testing.

FINAL GRAMMAR

A final grammar is one that cannot be derived from. A grammar that has no scope for refinement 

may be qualified as final.

final grammar simple;

structure {

      start: "A" & "B" | "C";

}

It is also possible to declare a node as final, implying that the node cannot be overridden in a 

derived grammar. 

JAVA INTEGRATION

JSynTest is a Java application and hence can be used on any platform where Java is supported (we 

have tested the application on WindowsTM, RedHat Linux, and Solaris 8TM, all on Intel PCs). In 

addition, since the synthesizer emitted by JSynTest is a Java program, the program along with the 

supplied runtime library can similarly be used on any platform.  If necessary, the emitted source can 

be modified and embedded in another Java application.

WHERE HAS BEEN JSYNTEST APPLIED?
JSynTest is a new product from our stable and we are trying to find interesting applications for the 

tool. We have so far applied the tool in the following domains:

Generating Intel 8085 CPU assembly language instructions.

Generating JVM instruction set that can be compiled into a .class file (this was part of an exper-

iment to check JVM security issues).

Other Applications
Although JSynTest is intended primarily for use in syntax testing, given that the core logic involves 

building and traversing an AND-OR graph, it is possible to use the tool in problems that benefit from 

a "generate-and-test" paradigm. One such problem is the 8-Queen puzzle that requires placement 
13



Automated Syntax Testing Using JSynTestTM
of eight queens on the chessboard such that no queen is in the path of another. Here is the grammar 

with action code (full source is not included):

grammar Q8;

structure{

      start: startline & "\r\n";

      startline: A & A & A & A & A & A & A & A;

      pos : "0" | "1" | "2" | "3" | "4" |"5" |"6" |"7";

      A: pos;

}

actions {

      QLogic.post: %{

      LGNamedNode named = node;

      LGNode y = named.getGrammarObject().getNamedNode("pos");

      int ypos = Integer.parseInt(out.getGeneratedString(y));

      if(logic.addQueen(ypos) == false){

            return LG_MOVE_NEXT;

      }

            return 0;

      %}

       QLogic.def: %{

            QLogic logic = new QLogic();

       %}

       QLogic.start:%{

            logic.reset();

       %}

}

bindings{

      A:QLogic;

}

CONCLUSION

Syntax testing is a powerful black box testing strategy for testing an application whose input domain 

can be characterized by a grammar. Many real world applications can benefit by this technique. It is 

also a technique that can most readily be automated. JSynTest is a GUI-based framework for syn-

tax-based testing.
14



Automated Syntax Testing Using JSynTestTM
FURTHER READING

1. Boris Beizer, Software Testing Techniques, 2nd Edition, Van Nostrand Reinhold, 1990.

2. Boris Beizer, Black-Box Testing, John Wiley & Sons, 1995.
15


	Automated Syntax Testing Using JSynTestTM
	1. GUI applications. GUI applications typically involve user interaction via dialog boxes. These dialogs often have data fields (e.g. date, phone number, social security number) that have a pre cise syntax.
	2. XML/HTML files. All XML/HTML files have a precise structure with well-defined tags. Such a structure is amenable to formal specification.
	3. Command-driven software. These are among the common applications that benefit from syn tax testing. Shell scripts and non-GUI applications that take command line arguments are exam ples.
	4. Scripting languages. Some commercial applications are bundled with support for a scripting language such as Perl, Python, VBScriptTM, and so on. For example, our tools JStyleTM and JEvolveTM support scripting in VBScriptTM and JMScriptTM. ...
	5. Database query languages. Database query languages such as SQL can be described by a for mal grammar.
	6. Compilers. Testing compilers is a formidable task due to the size of the input space. Since the compiled language has a precise grammar, it should be feasible to use the syntax specification to generate test cases, just as it is used for s...
	The Approach
	Automated Tools
	JSynTest
	The JSynTest Approach
	Step 1. Describe the input data space.
	Step 2. Generate a Java program from the input description.
	Step 3. Compile and run the generated Java program.

	Describing the Data Space
	Grammar File
	Actions
	AND-OR Graph
	A Complete Example
	Reuse of Grammars
	Final Grammar
	Java Integration
	Where has Been JSynTest Applied?
	Other Applications

	Conclusion
	Further Reading
	1. Boris Beizer, Software Testing Techniques, 2nd Edition, Van Nostrand Reinhold, 1990.
	2. Boris Beizer, Black-Box Testing, John Wiley & Sons, 1995.



